Deploying Al in an on-
premise environment

A how-to guide

Written by {g§ COSINE

Executive
summary

On-premise, once considered outdated, is becoming an attractive option for many
organisations when it comes to Al deployment

Running Al inside your boundary can deliver stronger control, lower cost volatility, and
better compliance than cloud deployments. The shift reflects a growing need for secure,
predictable, and auditable Al infrastructure in software engineering.

On-premise deployment of Al requires enterprises to make three thoughtful design
decisions.

Without cloud elasticity or proprietary APls, teams must make four core decisions up front:
1. How many GPUs to dedicate;

2. Which open-weight model to run;

3. How much post-training to perform

1. GPU capacity is the main determinant of Al's accuracy and throughput.

Too few GPUs, and accuracy, latency, and throughput degrade sharply. The right
investment here sets the upper bound on model quality and responsiveness.

2. Your choice of foundation model then defines the performance baseline.
Open-source models vary widely in performance, licensing terms, and language
coverage. Selecting the right foundation determines how far your deployment can go
before needing significant fine-tuning.

3. Custom post-training provides a real performance edge for organisations.
Tuning a model on internal or domain-similar codebases transforms generic output into

high-fidelity engineering assistance, raising precision and trust while maximising value
per GPU hour.

Leaders should deploy nhow and iterate over time, rather than waiting for perfection.

You don’'t need to start with a fully post-trained model or a large GPU cluster. Begin with a
strong open-source base, deploy it securely inside your boundary, and evolve with post-
training over time. The best way to build confidence in Al is to start, and then iterate
safely inside your own walls.

About Cosine

Cosine is an agentic Al software engineer for highly secure, on-premise
environments, fine-tuned to each customer’s codebase. (: @ Cosine cosine-monorepo Private Support Q

Cosine provides autonomous, policy aware engineering agents that work
through the software delivery pipeline. The agents open evidence rich pull

import React from "react';

. . . Implement Careers Page for Website () OPEN -
requests, generate and run tests, satisfy security and compliance checks, and ® const Careers: Remct.FC - () - 1
attach clear rationale so reviewers can approve with confidence. Cosine deploys return (
S : - S S c i flows... . . <main - ing: "2rem" }}»
inside your boundary and integrates with your existing repositories, continuous QO Runningworkflows = | Preview ain style=({ padding: "2ren’ }}
)))) cosine/add-careers-page-albs50 <hl>Careers</hl>
iIntegration, and security tooling. <p>
Interested in joining our team?
. . . . n You « 9 minutes ago We're always on the lookout for
Cosine serves engineering leaders who need measurable throughput in complex Add a careers page talented and passionate individuals!
or regulated settings. Typical owners include Heads of Engineering, Platform

Engineering, and Application Security. Teams use Cosine for high volume flows careers.tsx A orey tuned Tor 308 Postings:
such as test generation and maintenance, small bug fixes, dependency and
lockfile updates, flaky test repair, documentation at scale, and targeted security careers@example. com.
o o c o o </p>
remediation. The system is asynchronous and queue driven, so it clears ,p
: : : | .
backlogs without interrupting developer focus Vercel Deployments ’
d:j H
Cosine is available for free as a cloud service online, while enterprises can : export default Careers;
© website Openin A

explore virtual private cloud or on premise fully air-gapped deployments. Q

Cosine’s vertically-integrated setup ensures no on-premise data egress. ¢
© dashboard Openin A Q

For enterprises, Cosine can custom-train LLMs on specific coding languages o

and/or internal data. This drives higher accuracy at an efficient level of compute

and cost. T

Organisations adopt Cosine to increase pull request throughput and merge rate, =

raise build success, shorten time to remediation, shrink aged technical and
security debt, and maintain a complete audit trail with data kept inside their
boundary.

Give it a try Book a demo j

https://cosine.sh/site
https://cal.com/team/cosine/demo?utm_source=ii&utm_campaign=aiadoption

* The surprising resurgence of on-premise

“Reports of my death are greatly

exaggerated” 42%

Mark Twain (supposedly)

Meanwhile, 42% of those
surveyed said they are
considering or have already
repatriated at least half of their
cloud-based workloads

For a decade the story was clear: enterprises were
progressively shifting towards SaaS and public cloud, and away
from on-premise.

In 2025, the narrative has become more interesting. Enterprises
are still adding net-new cloud workloads, but a meaningful o o
share of existing work is returning to on-premise. 837% 21%

In a Barclays CIO survey, 83% of

SaasS is not shrinking overall - spend is still growing. But o ,
ClOs indicated they intend to

selective repatriation is happening.

move some workloads back to Flexor’s latest State of the Cloud
private or on-premise shows 21% of workloads and
infrastructure in 2024-25 (not data have already been
necessarily full reversals) repatriated to data centres

Source: Citrix; Barclays; Flexera

* Cost, security and regulatory factors are * ..and especially for Al tools

tilting the balance in favour of on-prem...

Why is this repatriation taking place? 3 reasons: Meanwhile, Al is accelerating the shift back to on-premise.

1. Cost control and budget predictability. After a decade of Each API call may silently export chunks of context, making it

“pay-as-you-go,” many organisations have discovered they
are paying too much for tools. Flexera’s latest survey
estimates that 27% of laaS/PaaS spend is wasted, and notes
that repatriation is frequently mentioned as a cost-
optimisation lever. In contrast, on-premise (or private cloud)
restores a fixed, knowable compute envelope.

. Security, sovereignty, and governance. Leaders increasingly
cite security and control as primary reasons to rebalance.
Bringing critical data and code back inside the boundary
reduces exposure and makes audit, key management, and
RBAC truly first-party. Recent increases in cyberattacks
globally (Check Point’s Q1'25 view reports a ~47% YoY jump in
average weekly attacks per org) have accelerated this trend.

. Regulatory pressure and data residency. As data-use rules
tighten, the path of least resistance is to process sensitive
workloads where organisations own the rails.

nearly impossible to audit whether data escaped.

Models can memorise or reconstruct proprietary inputs,
unintentionally revealing sensitive logic or code.

Behind the scenes, dynamic GPU scaling and “burst” usage can
shift costs unpredictably, and prompt caching introduces side-
channel leakage risks (research has identified shared model
caches across users).

In contrast, on-premise flips the equation: data never leaves

your boundary, governance stays internal, and GPU capacity
becomes a fixed asset you own and control.

Source: Citrix; Check Point; Flexera

* The designh burden | Why on-prem Al requires more thought

Shifting Al from cloud to on-premise is inherently more complex, and requires you to make decisions around design, provisioning and
governance. When it comes to Al software developer tools, there are three key decisions:

What hardware do | deploy?

You'll need to decide how many GPUs to
allocate and how to balance them between
inference and training workloads. Under-
provisioning limits your accuracy and
throughput; over-provisioning ties up capital
and power.

2

What open-weight Al model
do | choose?

Instead of an instant API call to GPT-5 or
Claude, you'll need to choose and host an
open-weights model, like Llama 3, Mistral,
Gemma, DeepSeek, Phi-3, and others. Each
of these has different strengths, licenses,
and compute footprints. Picking one that fits
your stack and GPU budget is critical.

3

What post-training do |
carry out?

To reach enterprise-grade precision, many
organisations choose to train their chosen
model on internal data, domain-specific
code, or synthetic analogues. The more
specialised and critical the work, the more
this matters. This is how you turn a capable
base model into a high-fidelity engineering
assistant.

1 * Hardware provisioning | Define your ceiling

Ultimately, your decision on how many GPUs to allocate depends on
two factors:

The first question is what hardware to deploy. With on-premise, each - nfOST G S M E T

GPU you allocate is deliberate, and in sum they define the performance 2 What tolerance for error you can expect
envelope for everything a model can do: latency, accuracy, and
concurrency all depend on it. Teams running code generation and test-automation workloads often

find that 2-4 well-utilised GPUs deliver most of the value, provided
fine-tuning closes the precision gap.

Model scale
(D Language models scale non-linearly with parameter count and compute. GPU allocation can also be minimised if you build your GPU set-up
DEUIoNLE [PEIEIMELETS G20 MUllplh InoUeiplil IBEUIETIEILS |8} Ems oes and agentic workflows efficiently. Specifically, quantisation and low-

you account for context windows and concurrency. A 70B-parameter

model therefore typically demands 2-4 A100s (40-80 GB) just to serve rank adapta.tyon .(LORA) reduce memory load VYh”? inference batching
interactively, while a 13B model can run comfortably on a single high-end improves utilisation. Some enterprises also pair high-end GPUs for
GPU. model serving with smaller cards (e.g. L4s) for agent orchestration,

optimising cost per request.

Trade-offs

K.l.3 Smaller models are cheaper to serve but less robust to complex prompts
and domain shifts. Cosine’s internal benchmarks show roughly a 15-20pp
drop in task-level accuracy when stepping down from a 70B to a 7B

model on real engineering tasks. To Conclude

The sweet spot is right-sizing compute to the precision and latency

that matter for your business, then maximising efficiency through
fine-tuning and orchestration.

2 4 Model choice | Define your baseline

Picking the right model is a foundational decision: it
establishes what “good” looks like before any fine-tuning
optimisations.

Here are the trade-offs you'll juggle:

Accuracy vs. efficiency / cost: larger models tend to have
better generalisation and subtle reasoning, but cost more to
serve.

Context window & memory: models vary in how many
tokens they support (important for long codebases or multi-
file context).

License & usage terms: “open source” isn't uniform—some
models allow full commercial use, while others impose
redistributor restrictions (e.g. LLaMAs “open” license isn't
fully open by OSI standards)

Community & tooling support: for example LLaMA has a
large ecosystem, which helps with integrations and
debugging

Model source: many of the highest-quality open source
models are Chinese, which some organisations choose not
to deploy for security reasons

The table below advises on a realistic model choice for a given level of

compute:

GPUs
(H100 or
equivalent)

2-7

8-15

16 or more

Recommended base
model
(as of January 2026)

gpt-0ss-120B

Mistral Large 3;
Deepseek V3.x

Kimi K2 thinking

Alternative options
(as of January 2026)

Llama 3.3 70B; Qwen
2.5; DeepSeek Coder
33B

Qwen-Coder-480B:
Mistral-next

Qwen-Ultra

3 4 Post-training Define your edge

Organisations can choose which data to post-train a model on -

Generic' open_weights models are a great start' but post_ these Options vary in terms of Complexity, cost and Iikely daCCuracy:.
training is how you turn them into high-fidelity engineering

assistants.
Least complex but least accurate

<
Domain—tuning Consistently |iftS task accuracy and reduces Off- Synthetic, domain-similar data (fastest to start; useful to shape style
L. and interfaces)
target answers on specialised work. For example, BloombergGPT
(50B), trained on finance corpora, outperforms similar-size
general models on financial tasks while remaining competitive on
general benchmarks.

. : Moderate complexity, moderate accurac
Post-training helps by teaching a model your languages, S . P Y, y
frameworks build svstems and policies. so it broposes dlffS that Public, language/framework-matched repos and docs (better: closer to

J y J p J p p i your real code paths)

match your stack and passes your gates. Multiple studies show
that targeted adaptation improves factuality in domain tasks and
counters hallucinations compared with base models alone.
leen.the.complexuy and cc?st of these processes, —. Most complex but most accurate
organisations can adopt an incremental approach where post < N o

. Internal code, tests, runbooks, policies (maximizes “ready-to-merge
trammg mltl.a”y takes pla(?e on domaln—glm[lar data and Only ' with proof”). Pair this with long-context tooling when you need to expose
extends to internal code if necessary - I.e. if yOuU use a very niche policy packs or larger repo slices during training/eval

coding language or have very specific working norms.

Source: 2024 Developer Survey, Stack Overflow

<4 Don't let perfect be the enemy of the good

The hardest part of deploying Al on-prem isn’t the technology. In
practice, teams often delay action chasing the “ideal” setup:
perfect data pipelines, fully post-trained models, or a complete
GPU cluster. In practice, those ambitions can stall momentum
before value is proven.

A bias to action is critical. A strong open-source model running
securely inside your boundary is already a meaningful step
forward. It gives you immediate control over data, cost, and policy,
while proving how Al interacts with your codebase and workflows.

Once on-premise is deployed, organisations can then continue
to iterate. Once the first deployment is stable, layer on the next
iImprovements: post-training, policy integration, test automation.
Each round compounds accuracy and trust without the overhead
of a full rebuild.

Orgs can then measure tangible outcomes (merge rates, time-to-
merge, Cl pass rate) and judge what needs to be ramped up and
when.

The enterprises seeing the fastest returns are those who ship a
minimal on-prem Al capability early, learn from telemetry, and
scale deliberately. Start small, stay secure, and evolve.

+ What next? The 12-month plan for tech leaders

Objective: Within 12 months, Al becomes a governed participant in the software delivery pipeline — fully within your
boundary, policy-aware by default, and tuned to your stack.

Month 1

Build the foundation

Define scope and ownership: name
accountable leads

Baseline metrics: record current pull-
request throughput, merge rate, build
success, time-to-remediation, and aged
issues

Set up a pilot environment: stand up a
private or air-gapped cluster; connect
repos, Cl, and security scanners

Start small: deploy a strong open-
weights model (e.g., Mistral 7B or Llama 3
70B) for low-risk flows such as
documentation or small bug fixes

Months 2to 6

Prove and tune

Instrument telemetry: measure latency,
GPU utilisation, and quality of Al-touched
changes

Begin lightweight post-training: use
domain-similar public or synthetic data to
close precision gaps

Enforce policy-as-code: require every
Al-generated change to ship with tests
run, checks green, and a short rationale

Governance cadence: weekly review
with security and monthly KPI reports to
leadership

Q3-Q4

Expand

Add more workflows: extend to test
generation, flaky-test repair, dependency
updates, and security remediation

Introduce internal post-training: train
adapters on your own code, policies, and
design docs

Harden infrastructure: implement
automated patching, continuous
vulnerability scans, and encrypted model
artifact stores

Monitor ROI: expect measurable gains of
+15-25% first-pass approvals, —20-30%
time-to-merge, and higher build health

Year 2 onwards

Standardise & scale

Move from pilot to platform: offer on-
prem Al as an internal service, with
defined SLAs and access tiers

Full audit integration: all model
inferences and commits logged locally for
compliance

Cost optimisation: quantise models,
right-size GPU allocation, and automate
adapter refreshes

Continuous improvement: establish a
retraining cadence using fresh diffs,
incidents, and regression tests

Closing
thoughts

The cloud made Al accessible, but on-premise will make it
accountable. Enterprises are rediscovering the value of sovereignty:
knowing exactly where models run, what data they see, and how
costs scale.

This report first traced that shift: we see a clear repatriation of
workloads from public cloud to private infrastructure.

Then it identified the reasons why: cost volatility, security fatigue, and
regulatory gravity. The arrival of generative Al simply sharpened that
choice: on-premise brings Al inside the boundary where it can be
governed and proven.

Then we outlined the playbook: start by allocating GPUs; then select an
open-weights model; and then layer on post-training to deliver
precision.

And finally, show a bias to action: deploy early, observe what works
(and doesn’t), and evolve accordingly.

In time, the organisations that win with Al will be those who learn to
use it securely and accurately. On premise provides an excellent
avenue.

{Z COSINE

