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Executive 
summary

On-premise, once considered outdated, is becoming an attractive option for many 
organisations when it comes to AI deployment.
Running AI inside your boundary can deliver stronger control, lower cost volatility, and 
better compliance than cloud deployments. The shift reflects a growing need for secure, 
predictable, and auditable AI infrastructure in software engineering.

On-premise deployment of AI requires enterprises to make three thoughtful design 
decisions.
Without cloud elasticity or proprietary APIs, teams must make four core decisions up front:


How many GPUs to dedicate;

Which open-weight model to run;

How much post-training to perform

GPU capacity is the main determinant of AI’s accuracy and throughput.
Too few GPUs, and accuracy, latency, and throughput degrade sharply. The right 
investment here sets the upper bound on model quality and responsiveness.

Your choice of foundation model then defines the performance baseline.
Open-source models vary widely in performance, licensing terms, and language 
coverage. Selecting the right foundation determines how far your deployment can go 
before needing significant fine-tuning.

Custom post-training provides a real performance edge for organisations.
Tuning a model on internal or domain-similar codebases transforms generic output into 
high-fidelity engineering assistance, raising precision and trust while maximising value 
per GPU hour.

Leaders should deploy now and iterate over time, rather than waiting for perfection.
You don’t need to start with a fully post-trained model or a large GPU cluster. Begin with a 
strong open-source base, deploy it securely inside your boundary, and evolve with post-
training over time. The best way to build confidence in AI is to start, and then iterate 
safely inside your own walls.



About Cosine
Cosine is an agentic AI software engineer for highly secure, on-premise 
environments, fine-tuned to each customer’s codebase.



Cosine provides autonomous, policy aware engineering agents that work 
through the software delivery pipeline. The agents open evidence rich pull 
requests, generate and run tests, satisfy security and compliance checks, and 
attach clear rationale so reviewers can approve with confidence. Cosine deploys 
inside your boundary and integrates with your existing repositories, continuous 
integration, and security tooling.



Cosine serves engineering leaders who need measurable throughput in complex 
or regulated settings. Typical owners include Heads of Engineering, Platform 
Engineering, and Application Security. Teams use Cosine for high volume flows 
such as test generation and maintenance, small bug fixes, dependency and 
lockfile updates, flaky test repair, documentation at scale, and targeted security 
remediation. The system is asynchronous and queue driven, so it clears 
backlogs without interrupting developer focus.



Cosine is available for free as a cloud service online, while enterprises can 
explore virtual private cloud or on premise fully air-gapped deployments. 
Cosine’s vertically-integrated setup ensures no on-premise data egress.



For enterprises, Cosine can custom-train LLMs on specific coding languages 
and/or internal data. This drives higher accuracy at an efficient level of compute 
and cost.



Organisations adopt Cosine to increase pull request throughput and merge rate, 
raise build success, shorten time to remediation, shrink aged technical and 
security debt, and maintain a complete audit trail with data kept inside their 
boundary.

Give it a try Book a demo

https://cosine.sh/site
https://cal.com/team/cosine/demo?utm_source=ii&utm_campaign=aiadoption


For a decade the story was clear: enterprises were 
progressively shifting towards SaaS and public cloud, and away 
from on-premise.



In 2025, the narrative has become more interesting. Enterprises 
are still adding net-new cloud workloads, but a meaningful 
share of existing work is returning to on-premise.

Source: Citrix; Barclays; Flexera

94% 

A Citrix survey found that 94% of 
respondents admitted to having 
moved some workloads back 
from the cloud in the past three 
years

42%

Meanwhile, 42% of those 
surveyed said they are 
considering or have already 
repatriated at least half of their 
cloud-based workloads

21%

Flexor’s latest State of the Cloud 
shows 21% of workloads and 
data have already been 
repatriated to data centres

83%

In a Barclays CIO survey, 83% of 
CIOs indicated they intend to 
move some workloads back to 
private or on-premise 
infrastructure in 2024–25 (not 
necessarily full reversals)

The surprising resurgence of on-premise

“Reports of my death are greatly 
exaggerated”  
Mark Twain (supposedly)

SaaS is not shrinking overall - spend is still growing. But 
selective repatriation is happening.



Cost, security and regulatory factors are 
tilting the balance in favour of on-prem...

...and especially for AI tools

Why is this repatriation taking place? 3 reasons:



Cost control and budget predictability. After a decade of 
“pay-as-you-go,” many organisations have discovered they 
are paying too much for tools. Flexera’s latest survey 
estimates that 27% of IaaS/PaaS spend is wasted, and notes 
that repatriation is frequently mentioned as a cost-
optimisation lever. In contrast, on-premise (or private cloud) 
restores a fixed, knowable compute envelope.



Security, sovereignty, and governance. Leaders increasingly 
cite security and control as primary reasons to rebalance. 
Bringing critical data and code back inside the boundary 
reduces exposure and makes audit, key management, and 
RBAC truly first-party. Recent increases in cyberattacks 
globally (Check Point’s Q1’25 view reports a ~47% YoY jump in 
average weekly attacks per org) have accelerated this trend.



Regulatory pressure and data residency. As data-use rules 
tighten, the path of least resistance is to process sensitive 
workloads where organisations own the rails.

Meanwhile, AI is accelerating the shift back to on-premise. 



Each API call may silently export chunks of context, making it 
nearly impossible to audit whether data escaped. 



Models can memorise or reconstruct proprietary inputs, 
unintentionally revealing sensitive logic or code. 



Behind the scenes, dynamic GPU scaling and “burst” usage can 
shift costs unpredictably, and prompt caching introduces side-
channel leakage risks (research has identified shared model 
caches across users). 



In contrast, on-premise flips the equation: data never leaves 
your boundary, governance stays internal, and GPU capacity 
becomes a fixed asset you own and control.

Source: Citrix; Check Point; Flexera



The design burden Why on-prem AI requires more thought

Shifting AI from cloud to on-premise is inherently more complex, and requires you to make decisions around design, provisioning and 
governance. When it comes to AI software developer tools, there are three key decisions:

1

What hardware do I deploy?

You’ll need to decide how many GPUs to 
allocate and how to balance them between 
inference and training workloads. Under-
provisioning limits your accuracy and 
throughput; over-provisioning ties up capital 
and power. 

2

What open-weight AI model 
do I choose?

Instead of an instant API call to GPT-5 or 
Claude, you’ll need to choose and host an 
open-weights model, like Llama 3, Mistral, 
Gemma, DeepSeek, Phi-3, and others. Each 
of these has different strengths, licenses, 
and compute footprints. Picking one that fits 
your stack and GPU budget is critical.

3

What post-training do I 
carry out?

To reach enterprise-grade precision, many 
organisations choose to train their chosen 
model on internal data, domain-specific 
code, or synthetic analogues. The more 
specialised and critical the work, the more 
this matters. This is how you turn a capable 
base model into a high-fidelity engineering 
assistant.



The first question is what hardware to deploy. With on-premise, each 
GPU you allocate is deliberate, and in sum they define the performance 
envelope for everything a model can do: latency, accuracy, and 
concurrency all depend on it.

Ultimately, your decision on how many GPUs to allocate depends on 
two factors: 

What tolerance for error you can expect2

1 How many you can afford

Teams running code generation and test-automation workloads often 
find that 2–4 well-utilised GPUs deliver most of the value, provided 
fine-tuning closes the precision gap.



GPU allocation can also be minimised if you build your GPU set-up 
and agentic workflows efficiently. Specifically, quantisation and low-
rank adaptation (LoRA) reduce memory load while inference batching 
improves utilisation. Some enterprises also pair high-end GPUs for 
model serving with smaller cards (e.g. L4s) for agent orchestration, 
optimising cost per request.

Hardware provisioning Define your ceiling

Language models scale non-linearly with parameter count and compute. 
Doubling parameters can multiply throughput requirements by 3–5x once 
you account for context windows and concurrency. A 70B-parameter 
model therefore typically demands 2–4 A100s (40–80 GB) just to serve 
interactively, while a 13B model can run comfortably on a single high-end 
GPU.

Model scale

Trade-offs
Smaller models are cheaper to serve but less robust to complex prompts 
and domain shifts. Cosine’s internal benchmarks show roughly a 15–20pp 
drop in task-level accuracy when stepping down from a 70B to a 7B 
model on real engineering tasks. To Conclude 

The sweet spot is right-sizing compute to the precision and latency 
that matter for your business, then maximising efficiency through 
fine-tuning and orchestration.

1



Picking the right model is a foundational decision: it 
establishes what “good” looks like before any fine-tuning 
optimisations.



Here are the trade-offs you’ll juggle:



Accuracy vs. efficiency / cost: larger models tend to have 
better generalisation and subtle reasoning, but cost more to 
serve.

Context window & memory: models vary in how many 
tokens they support (important for long codebases or multi-
file context).

License & usage terms: “open source” isn’t uniform—some 
models allow full commercial use, while others impose 
redistributor restrictions (e.g. LLaMA’s “open” license isn’t 
fully open by OSI standards)

Community & tooling support: for example LLaMA has a 
large ecosystem, which helps with integrations and 
debugging

Model source: many of the highest-quality open source 
models are Chinese, which some organisations choose not 
to deploy for security reasons


The table below advises on a realistic model choice for a given level of 
compute:

Model choice Define your baseline

# GPUs 

(H100 or 
equivalent)

Recommended base 
model  
(as of January 2026)

Alternative options 
(as of January 2026)

2-7 gpt-oss-120B Llama 3.3 70B; Qwen 
2.5; DeepSeek Coder 
33B

8-15 Mistral Large 3; 
Deepseek V3.x

Qwen-Coder-480B; 
Mistral-next

16 or more Kimi K2 thinking Qwen-Ultra

2



Source: 2024 Developer Survey, Stack Overflow 

Most complex but most accurate
Internal code, tests, runbooks, policies (maximizes “ready-to-merge 
with proof”). Pair this with long-context tooling when you need to expose 
policy packs or larger repo slices during training/eval

Moderate complexity, moderate accuracy
Public, language/framework-matched repos and docs (better: closer to 
your real code paths)

Least complex but least accurate
Synthetic, domain-similar data (fastest to start; useful to shape style 
and interfaces)

Post-training Define your edge

Organisations can choose which data to post-train a model on - 
these options vary in terms of complexity, cost and likely accuracy:Generic, open-weights models are a great start, but post-

training is how you turn them into high-fidelity engineering 
assistants.



Domain-tuning consistently lifts task accuracy and reduces off-
target answers on specialised work. For example, BloombergGPT 
(50B), trained on finance corpora, outperforms similar-size 
general models on financial tasks while remaining competitive on 
general benchmarks.



Post-training helps by teaching a model your languages, 
frameworks, build systems, and policies, so it proposes diffs that 
match your stack and passes your gates. Multiple studies show 
that targeted adaptation improves factuality in domain tasks and 
counters hallucinations compared with base models alone. 



Given the complexity and cost of these processes, 
organisations can adopt an incremental approach where post 
training initially takes place on domain-similar data and only 
extends to internal code if necessary - i.e. if you use a very niche 
coding language or have very specific working norms.
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Don’t let perfect be the enemy of the good

The hardest part of deploying AI on-prem isn’t the technology. In 
practice, teams often delay action chasing the “ideal” setup: 
perfect data pipelines, fully post-trained models, or a complete 
GPU cluster. In practice, those ambitions can stall momentum 
before value is proven.



A bias to action is critical. A strong open-source model running 
securely inside your boundary is already a meaningful step 
forward. It gives you immediate control over data, cost, and policy, 
while proving how AI interacts with your codebase and workflows.



Once on-premise is deployed, organisations can then continue 
to iterate. Once the first deployment is stable, layer on the next 
improvements: post-training, policy integration, test automation. 
Each round compounds accuracy and trust without the overhead 
of a full rebuild.



Orgs can then measure tangible outcomes (merge rates, time-to-
merge, CI pass rate) and judge what needs to be ramped up and 
when.



The enterprises seeing the fastest returns are those who ship a 
minimal on-prem AI capability early, learn from telemetry, and 
scale deliberately. Start small, stay secure, and evolve.



What next? The 12-month plan for tech leaders

Objective: Within 12 months, AI becomes a governed participant in the software delivery pipeline — fully within your 
boundary, policy-aware by default, and tuned to your stack.

Define scope and ownership: name 
accountable leads 



Baseline metrics: record current pull-
request throughput, merge rate, build 
success, time-to-remediation, and aged 
issues



Set up a pilot environment: stand up a 
private or air-gapped cluster; connect 
repos, CI, and security scanners



Start small: deploy a strong open-
weights model (e.g., Mistral 7B or Llama 3 
70B) for low-risk flows such as 
documentation or small bug fixes

Instrument telemetry: measure latency, 
GPU utilisation, and quality of AI-touched 
changes



Begin lightweight post-training: use 
domain-similar public or synthetic data to 
close precision gaps



Enforce policy-as-code: require every 
AI-generated change to ship with tests 
run, checks green, and a short rationale



Governance cadence: weekly review 
with security and monthly KPI reports to 
leadership

A dd more workflows: extend to test 
generation, flaky-test repair, dependency 
updates, and security remediation



Introduce internal post-training: train 
adapters on your own code, policies, and 
design docs



Harden infrastructure: implement 
automated patching, continuous 
vulnerability scans, and encrypted model 
artifact stores



Monitor ROI: expect measurable gains of 
+15-25% first-pass approvals, −20-30% 
time-to-merge, and higher build health

M ove from pilot to platform: offer on-
prem AI as an internal service, with 
defined SLAs and access tiers



Full audit integration: all model 
inferences and commits logged locally for 
compliance



Cost optimisation: quantise models, 
right-size GPU allocation, and automate 
adapter refreshes



Continuous improvement: establish a 
retraining cadence using fresh diffs, 
incidents, and regression tests

Build the foundation

Month 1 

Prove and tune

Months 2 to 6

Expand

Q3-Q4 Year 2 onwards

Standardise & scale



Closing 
thoughts

The cloud made AI accessible, but on-premise will make it 
accountable. Enterprises are rediscovering the value of sovereignty: 
knowing exactly where models run, what data they see, and how 
costs scale.



This report first traced that shift: we see a clear repatriation of 
workloads from public cloud to private infrastructure.



Then it identified the reasons why: cost volatility, security fatigue, and 
regulatory gravity. The arrival of generative AI simply sharpened that 
choice: on-premise brings AI inside the boundary where it can be 
governed and proven.



Then we outlined the playbook: start by allocating GPUs; then select an 
open-weights model; and then layer on post-training to deliver 
precision. 



And finally, show a bias to action: deploy early, observe what works 
(and doesn’t), and evolve accordingly.



In time, the organisations that win with AI will be those who learn to 
use it securely and accurately. On premise provides an excellent 
avenue.




